Ultrathin Miniature Package
 SR10000 Series - 1-channel Step-up DC/DC Converter ICs

Overview

The SR10000 Series is a SANYO's original SIP (System In Package) that includes a DC/DC converter control IC, a power MOSFET and a Schottky barrier diode. All these components are mounted into one thin-and-small package by utilizing SANYO’s high-density mounting technology, "Integrated System in Board (ISB)".
The advantage using this DC/DC converter package is that it greatly decreases its mounting area and space, compared with when the same circuit is set up with the discrete devices. In addition to that, it is very easy to assemble step-up switching power supply with by just adding voltage-setting resistance, inductor and capacitors.

Functions and Features

- Since the SR10000 Series packages a voltage step-up DC/DC converter IC as well as power MOSFET and Schottky barrier diode devices in the same package with the minimum trace length between components, it can provides high efficiency and superior characteristics including low output ripple. In particular the mounting area required by these components is reduced when compared to implementations using discrete devices.
- The output voltage is set using an external resistor.
- Standby function: Standby mode current $=1 \mu \mathrm{~A}$ (maximum)
- Automatic PWM/PFM switching control (SR10020, SR10040, SR10050)
- External PWM/PFM switching control (SR10030, SR10060, SR10070)
- Oscillator frequency: 100kHz (SR10060), 180kHz (SR10030), 300kHz (SR10020, SR10070), 500kHz (SR10040, SR10050) (accuracy $\pm 15 \%$)
- The values given in this data sheet for models SR10060 is tentative and subject to change before putting into mass production.
\square Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
- SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

Comparison of Functions

Type No.	DC/DC Controller IC			TR Maximum Rating		Di Maximum Rating		Output Setting *1
	Control System	Input Voltage Range	Oscillator Frequency	$\mathrm{V}_{\text {DSS }}$	ID	$\mathrm{V}_{\text {RRM }}$	IO	
SR10020	Automatic PWM/PFM switching control	0.9 V to 10 V	300 kHz	30 V	2.5A	30 V	1A	1.5 V to 20 V
SR10030	External PWM/PFM switching control	0.9 V to 10 V	180kHz	30V	2.5A	30 V	1A	1.5 V to 20 V
SR10040	Automatic PWM/PFM switching control	0.9 V to 10 V	500kHz	30V	2.5A	30V	1A	1.5 V to 20 V
SR10050	Automatic PWM/PFM switching control	0.9 V to 10 V	500 kHz	30V	2.5A	15V	2A	1.5 V to 10 V
SR10060	External PWM/PFM switching control	0.9 V to 10 V	100kHz	20V	3A	30 V	1A	1.5 V to 13 V
SR10070	External PWM/PFM switching control	0.9 V to 10V	300kHz	20V	3A	15V	2A	1.5 V to 10V

*1: The output setting maximum values are voltages that are $1 / 1.5$ times the VDSS and VRRM as a general rule of thumb, and they are provided to serve as a reference only. As such, it must be verified during actual operation that they do not exceed the rated voltages.

Package Dimensions

unit : mm

Pin Layout and Internal Equivalent Circuit Block Diagram

$\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$

Bottom view

1D, 1E
2D, 2E, 3E 3D

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Device	Parameter	Symbol	Conditions	Ratings	Unit
IC	$V_{\text {DD }}$ pin voltage	$V_{\text {DD }}$		-0.3 to +12	V
	FB pin voltage	VFB		-0.3 to +12	V
	CE pin voltage	$V_{\text {CE }}$		-0.3 to +12	V
	EXT pin voltage	VEXT		-0.3 to $V_{D D}+0.3$	V
	EXT pin current	IEXT		± 100	mA
TR	Drain-to-source voltage 1	$\mathrm{V}_{\text {DSS }}{ }^{1}$	SR10020, SR10030, SR10040, SR10050	30	V
	Gate-to-source voltage 1	$\mathrm{V}_{\text {GSS }}{ }^{1}$		± 12	V
	Drain current 1	${ }^{\prime}{ }^{1} 1$		2.5	A
	Drain-to-source voltage 2	$\mathrm{V}_{\text {DSS }}{ }^{2}$	SR10060, SR10070	20	V
	Gate-to-source voltage 2	$\mathrm{V}_{\mathrm{GSS}}{ }^{2}$		± 10	V
	Drain current 2	${ }^{\text {I }}$ 2		3	A
	Allowable power dissipation	$\mathrm{P}_{\mathrm{D}}-\mathrm{T}$	$60 \mathrm{~mm} \times 60 \mathrm{~mm} \times 1.6 \mathrm{~mm}^{3}$ FR4 board	700	mW
Di	Reverse voltage 1	$\mathrm{V}_{\text {RRM }}{ }^{1}$	SR10020, SR10030, SR10040, SR10060	30	V
	Output current 1	$\mathrm{l}^{1} 1$		1	A
	Reverse voltage 2	$\mathrm{V}_{\mathrm{RRM}}{ }^{2}$	SR10050, SR10070	15	V
	Output current 2	$\mathrm{l}^{2} 2$		2	A
	Allowable power dissipation	$\mathrm{P}_{\mathrm{D}}{ }^{-D}$	$60 \mathrm{~mm} \times 60 \mathrm{~mm} \times 1.6 \mathrm{~mm}^{3}$ FR4 board	750	mW
Operating temperature		Topr		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Overall Operating Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$, in the specified test circuit

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Output voltage	VOUT	$\mathrm{V}_{1 \mathrm{~N}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	3.217	3.300	3.383	V
Output voltage setting range	VOSET	$\mathrm{V}_{\text {IN }}=\mathrm{VOSET} \times 0.6, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}$	1.5		*2	V
FB control voltage	VFB			0.9		V
Supply voltage	V_{DD}	*3	1.8		10	V
Operation start voltage	VST	$\mathrm{I}^{\mathrm{O}}=1 \mathrm{~mA}$			0.9	V
Current dissipation	${ }^{\text {I DD }}$	$\mathrm{V}_{1 \mathrm{~N}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \mathrm{SR10060}$		29	41	$\mu \mathrm{A}$
		$\mathrm{V}_{1 \mathrm{~N}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \mathrm{SR10030}$		45	64	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \mathrm{SR10020}, \mathrm{SR10070}$		62	88	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA} \mathrm{SR10040}, \mathrm{SR10050}$		97	137	$\mu \mathrm{A}$
Standby current	ISTB	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
Oscillator frequency	FOSC	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \mathrm{SR10060}$	85	100	115	kHz
		$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \mathrm{SR10030}$	153	180	207	kHz
		$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \mathrm{SR10020}, \mathrm{SR10070}$	255	300	345	kHz
		$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA} \mathrm{SR10040}, \mathrm{SR10050}$	425	500	575	kHz
Efficiency	EFFI			85		\%
CE high voltage	VCEH		0.65			V
CE low voltage	VCEL				0.20	V
PWM high voltage	VPWMH	SR10030, SR10060, SR10070 *4	$\mathrm{V}_{\mathrm{DD}}-0.2$			V
PWM low voltage	VPWML	SR10030, SR10060, SR10070 *4			$\mathrm{V}_{\mathrm{DD}}{ }^{-1.0}$	V
CE high current	ICEH	$C E=V_{D D}=3.3 \mathrm{~V}$			0.1	$\mu \mathrm{A}$
CE low current	ICEL	$\mathrm{CE}=0 \mathrm{~V}$			0.1	$\mu \mathrm{A}$

*2: The output setting maximum voltages are within $1 / 1.5$ times the VDSS of the built-in MOSFET and within 1/1.5 times the VRRM of the Di as a general rule of thumb. As such, it must be verified during actual operation that they do not exceed the rated voltages.
$* 3$: V_{DD} should be 1.8 V or higher when V_{IN} or other power source is supplying V_{DD} since the output voltage and oscillating frequency become steady when V_{DD} is set 1.8 V or higher, although the built-in IC starts step-up voltage operation from $V_{D D}=0.8 \mathrm{~V}$.
*4: For models SR10030, SR10060, and SR10070, the CE pin also serves to implement a PWM/PFM external switching function. When the voltage is $\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$ or more, PWM control is exercised, and when it is VCEH or more but $\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$ or less, $\mathrm{PWM} / \mathrm{PFM}$ automatic switching at a duty ratio of 25% is controlled.

Di Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}$, in the specified test circuit

Parameter	Symbol	Conditions		min	typ	max	unit
Forward voltage 1	VF1	SR10020, SR10030 SR10040, SR10060	$\mathrm{IF}=1 \mathrm{~A}$		0.43	0.47	V
Reverse current 1	IR1		$\mathrm{VR}=30 \mathrm{~V}$		40	200	$\mu \mathrm{A}$
Forward voltage 2	VF2	SR10050, SR10070	$\mathrm{IF}=1 \mathrm{~A}$		0.30	0.35	V
Reverse current 2	IR2		$\mathrm{VR}=6 \mathrm{~V}$			600	$\mu \mathrm{A}$

Pin Functions

Pin No.	Pin Name	Description
1A	GND	Ground pin for IC.
1B, 1C	TR Source	Source pin for TR
1D, 1E, 2D, 2E, 3E	TR Drain, Di Anode	Drain of TR and Anode of Diode
$\begin{aligned} & 2 A, 2 B, 2 C, 3 A, 3 B, 3 C \\ & 4 A, 4 B, 4 C, 5 B \end{aligned}$	IC $V_{\text {DD }}$	Supply voltage for IC
3D	IC EXT, TR Gate	Gate for TR
4D, 4E, 5D, 5E	Di Cathode	Cathode of Diode and $\mathrm{V}_{\text {OUT }}$
5A	IC CE	Operation starts when chip enable pin is set to "high". This pin also serves as a PWM/PFM selector for models SR10030, SR10060, and SR10070.
5C	IC FB	External resistance connecting pin for output voltage setting, internal control voltage: 0.9 V typical

Equivalent Circuit and Test Peripheral Circuitry

Selection rules of external components

1) RFB: Set the ratio of RFB1 and RFB2 to be RFB1 + RFB $2 \leq 2 \mathrm{M} \Omega$ and $\mathrm{VFB}=0.9 \mathrm{~V}$.
2) CFB: Set $\mathrm{fzfb}=1 /(2 \times \pi \times \mathrm{CFB} \times$ RFB1 $)$ to be within 5 kHz to 30 kHz .
3) L, Co, RSENSE:

When ceramic capacitor is used for $\mathrm{Co}: \quad \mathrm{L}=10 \mu \mathrm{H}, \mathrm{Co}=10 \mu \mathrm{~F}$ (SR10020, SR10040, SR10050, SR10070)
$\mathrm{L}=22 \mu \mathrm{H}, \mathrm{Co}=10 \mu \mathrm{~F}$ (SR10030, SR10060) RSENSE $=50 \mathrm{~m} \Omega$ (SR10060), $100 \mathrm{~m} \Omega$ (other than SR10060)
When tantalum capacitor is used for $\mathrm{Co}: ~ \mathrm{~L}=10 \mu \mathrm{H}, \mathrm{Co}=47 \mu \mathrm{~F}$ (SR10040, SR10050) $\mathrm{L}=22 \mu \mathrm{H}, \mathrm{Co}=47 \mu \mathrm{~F}$ (SR10020, SR10070) $\mathrm{L}=47 \mu \mathrm{H}, \mathrm{Co}=47 \mu \mathrm{~F}$ (SR10030, SR10060) RSENSE=None (shorted)
When electrolytic capacitor is used for Co: $\mathrm{L}=22 \mu \mathrm{H}, \mathrm{Co}=100 \mu \mathrm{~F} / / 2.2 \mu \mathrm{~F}$ ceramic (SR10020, SR10070) $\mathrm{L}=47 \mu \mathrm{H}, \mathrm{Co}=100 \mu \mathrm{~F} / / 2.2 \mu \mathrm{~F}$ ceramic (SR10030, SR10060) RSENSE=None (shorted)

These constants of the components above should be changed if necessary for larger step-up ratio $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$ and larger output current IOUT using the expression shown below as a reference.
$\mathrm{Co}=\left(\right.$ Standard $\left.\mathrm{Co}^{*}\right) \times\left(\operatorname{IOUT}(\mathrm{mA}) / 300 \mathrm{~mA} \times \mathrm{VOUT}_{\mathrm{OU}} / \mathrm{V}_{\text {IN }}\right)$

* Standard Co: values shown above

SR10000 Series

SR10000 Series

<Manufactured by>

ISB Business Unit, Electronic Device Company,
 Component \& Device Group, SANYO Electric Co., Ltd.

\square Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment
\square SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
\square In the event that any or all SANYO Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 2006. Specifications and information herein are subject to change without notice.

